Underlying biological mechanisms and pathophysiology of cancer-related fatigue

Julienne E. Bower, Ph.D.
UCLA Department of Psychology and Psychiatry
Cousins Center for Psychoneuroimmunology
What causes fatigue?

Fatigue
Fatigue

Demographic factors

• Age
• Income
• Marital status
Fatigue

Demographic factors
• Age
• Income
• Marital status

Psychosocial factors
• Depression
• Catastrophizing coping style
Fatigue

Demographic factors
- Age
- Income
- Marital status

Psychosocial factors
- Depression
- Catastrophizing coping style

Health behaviors
- Physical activity
- Sleep disturbance
Fatigue

Comorbid symptoms
- Pain
- Menopausal sx

Health behaviors
- Physical activity
- Sleep disturbance

Psychosocial factors
- Depression
- Catastrophizing coping style

Demographic factors
- Age
- Income
- Marital status
Fatigue

Comorbid medical conditions
- Cardiovascular disease
- BMI

Comorbid symptoms
- Pain
- Menopausal sx

Health behaviors
- Physical activity
- Sleep disturbance

Demographic factors
- Age
- Income
- Marital status

Psychosocial factors
- Depression
- Catastrophizing coping style
Fatigue

Comorbid medical conditions
- Cardiovascular disease
- BMI

Comorbid symptoms
- Pain
- Menopausal sx

Biological factors
- Anemia
- Inflammation

Demographic factors
- Age
- Income
- Marital status

Psychosocial factors
- Depression
- Catastrophizing coping style

Health behaviors
- Physical activity
- Sleep disturbance
Fatigue

Comorbid medical conditions
• Cardiovascular disease
• BMI

Comorbid symptoms
• Pain
• Menopausal sx

Biological factors
• Anemia
• Inflammation

Demographic factors
• Age
• Income
• Marital status

Psychosocial factors
• Depression
• Catastrophizing coping style

Health behaviors
• Physical activity
• Sleep disturbance
Inflammation

• Body’s response to infection or injury
• Mediated by proinflammatory cytokines
 – IL-1β, IL-6, TNF-α
• Local and systemic effects, including effects on the brain
“Sickness behavior”

- Fatigue/ reduced activity
- Decreased food and water intake
- Decreased social and sexual behavior
- Alterations in cognition and mood
Model of cancer-related fatigue

Cancer and cancer treatment → Inflammation → FATIGUE
Inflammation and CRF

• Research conducted over past 10+ years has examined links between fatigue and inflammation in cancer populations
 – Studies have generally supported an association between fatigue and markers of inflammation
 – Negative results also reported
 – Range of patient populations and inflammatory markers assessed
Inflammation and pre-tx fatigue

• Ovarian cancer patients (Lutgendorf et al., 2008)
 – Fatigue and other vegetative symptoms of depression correlated with circulating levels of IL-6
 – In animal model, tumor-associated production of proinflammatory cytokines associated with reduced locomotor activity (Lamkin et al., 2011)

• Breast cancer patients (Fagundes et al., 2012)
 – CRP not elevated in women classified as “fatigued”
Inflammation and on-tx fatigue

- Radiation therapy
 - Early studies found mixed support for link between inflammatory markers and fatigue
 - Noisy system; variability within and across individuals may make it difficult to identify relationships
 - Results may depend on biomarker, timing of assessment, and analytic method
Inflammation and on-tx fatigue

• Chemotherapy
 – Breast cancer: sICAM linked to fatigue during chemotherapy (Mills et al., 2005)
 – Colorectal, esophageal, non-small cell lung cancer: inflammatory markers linked to fatigue during combined chemotherapy and radiation therapy (Wang et al., 2010, 2012)
Inflammation in cancer survivors

• Growing number of studies have examined links between inflammation and persistent, post-treatment fatigue
• Reasonably strong evidence for elevated inflammation in fatigued survivors
Elevated inflammatory markers in post-treatment fatigue

5 years post-treatment

Bower et al., 2002
Elevated inflammatory markers in post-treatment fatigue

5 years post-treatment

2.5 years post-treatment

Bower et al., 2002

Collado-Hidalgo, Bower et al., 2006
Fatigue correlated with inflammatory markers at one month post-treatment

A: No chemotherapy

B: Chemotherapy

Association significant controlling for age, BMI

Bower et al., JCO, 2011
Inflammation and post-tx fatigue

- Recent, larger studies focusing on survivors with severe, persistent fatigue confirm elevations in inflammatory biomarkers
 - Breast cancer survivors
 - Alexander et al., 2009 (n = 164)
 - Orre et al., 2011 (n = 299)
 - Alfano et al., 2012 (n = 633)
 - Testicular cancer survivors
 - Orre et al., 2009 (n = 283)
- Mixed results from smaller studies with more heterogeneous samples of patients
Model of cancer-related fatigue

Cancer and cancer treatment → Inflammation → FATIGUE
Individual differences in fatigue

• There is considerable variability in fatigue symptoms
 – Only a subgroup experience severe, persistent fatigue
Low and high fatigue groups after breast cancer treatment

Donovan et al., Health Psych, 2007
Risk factors for fatigue

- What puts some patients at risk for cancer-related fatigue?
- Focus on host factors associated with increased inflammatory activity
 - Genetic
 - Neuroendocrine and immune
 - Biobehavioral
Model of cancer-related fatigue

Cancer and cancer treatment → Inflammation → FATIGUE
FATIGUE

Cancer and cancer treatment

Genetic factors
SNPs in cytokine genes

Biobehavioral factors
Stress, depression, sleep, BMI

Neuroendocrine system
HPA axis
ANS

Immune system
Viral reactivation

Inflammation

FATIGUE
FATIGUE

Cancer and cancer treatment

Genetic factors
SNPs in cytokine genes

Biobehavioral factors
Stress, depression, sleep, BMI

Neuroendocrine system
HPA axis
ANS

Immune system
Viral reactivation

Inflammation

FATIGUE
HPA regulation of inflammation

- Alterations in cortisol production/release
- Alterations in glucocorticoid receptor signaling

Elevated evening cortisol in fatigued BCS

Salivary cortisol (log ng/dL)

- O - Fatigued BCS
- - Non-fatigued BCS

Hour of sample collection

Bower et al., Psychoneuroendocrinology, 2005

B = 0.092, p < .018
Blunted cortisol response to stress in fatigued BCS

Group x Time interaction: $F = 4.5$, $p = .001$

Bower et al., *Psychosom Med*, 2005
Cortisol production and fatigue

- Ovarian cancer patients before surgery
 - Fatigue linked to higher evening cortisol, reduced cortisol variability (Weinrib et al., 2010)

- Melanoma patients before IFN therapy
 - Exaggerated HPA response to initial treatment predicted development of depressive symptoms (Capuron et al., 2003)
Alterations in glucocorticoid receptor sensitivity in fatigued survivors

• Under-expression of genes bearing anti-inflammatory glucocorticoid response elements

Bower et al., 2011
Alterations in glucocorticoid receptor sensitivity in fatigued survivors

- Under-expression of genes bearing anti-inflammatory glucocorticoid response elements
- Over-expression of genes bearing response elements for pro-inflammatory NF-κB

Bower et al., 2011
Genetic factors
SNPs in cytokine genes

Biobehavioral factors
Stress, depression, sleep, BMI

Cancer and cancer treatment

Inflammation

Neuroendocrine system
HPA axis
ANS

Immune system
Viral reactivation

FATIGUE
Genetic risk factors and fatigue

• During treatment
 – SNPs in *TNFA* and *IL6* associated with fatigue during RT for breast, prostate, lung, or brain cancer (Aouizerat et al 2009, Miaskowski et al 2010)
 – SNPs in *TNFA* and *IL6* associated with fatigue during androgen deprivation therapy for prostate cancer (Jim et al., 2012)

• Post treatment
 – SNPs in *IL1B* and *IL1RN* associated with fatigue in large sample of lung cancer survivors (Rausch et al 2010)
Implications for treatment

- If inflammation is driving fatigue, interventions that target inflammation may be effective in reducing CRF
 - Pharmacologic interventions?
 - Exercise?
 - Stress management?
 - Mind-body therapies? (e.g., yoga, Tai Chi, Qigong)
Future directions

• Animal models of cancer-related fatigue to probe underlying mechanisms
• Prospective, longitudinal studies that comprehensively evaluate predictors and associated mechanisms
• Focus on downstream biomarkers of inflammatory cytokine activity
 • CRP, soluble TNF receptors, etc.
Acknowledgements

Patricia Ganz, M.D.
Steve Cole, Ph.D.
Michael Irwin, M.D.
Alicia Collado-Hidalgo, Ph.D.
Elizabeth Breen, Ph.D.
Lorna Kwan, M.P.H.
Jesusa Arevalo
George Slavich, Ph.D.
Alexandra Dupont, M.A.

NIH/NCI R01 CA 109650
NIH/NCCAM 5U01 AT 003682
UCLA Jonsson Comprehensive Cancer Center
Cousins Center for Psychoneuroimmunology
Breast Cancer Research Foundation
UC Cancer Research Coordinating Committee